超伝導量子コンピュータ

東京大学

田渕豊

PC8801-MKII	全国 プログ 5	高等専門学校 ラミングコンテ	交 スト	ACM ICPC プロコン	SuperCon 08 東工大
ТК-85	http://ii ia.co.jp/ /20/qua	mage.itmed /news/0302 antumcom.g if	特別高圧変圧器 2万2千∨		東大阪宇宙開 発協同組合 まいど1号2号 プロジェクト
Σ 基礎エ 		DOI: 10.1126/scie 693	nce.aaa3	(Since 2016)	COPIC ACHINES

回路の(量子)物理学

さよなら、ユニタリ こんにちは、ハミルトニアン

• LC共振器

共振周波数 ω₀ 時定数 τ

Q值 = ω₀τ

1周期に損失するエネルギー

• LC共振器

• LC共振器

• LC共振器

・ 電子は遅い??

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1481045149

・ 電子は遅い??

Surface plasmon polariton

Fig1 in http://iramis.cea.fr/spec/Pres/Quantro/static/wp-content/uploads/2010/10/Joyez.pdf

・ 電子は遅い??

https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1481045 149

超伝導状態 Fig1 in http://iramis.cea.fr/spec/Pres/Quantro/static/wp-content/uploads/2010/10/Joyez.pdf

緩和(散乱)

ジョセフソン接合

B. D. Josephson 1962 Slide from 中村先生

• 個数 $n \Leftrightarrow$ 位相差 θ $[n, \theta] = -i$

Cooper-pair tunneling

Alternative image https://qph.ec.quoracdn.net/mainqimg-246699659739f6bd57842972a52781bd. webp

$$H = -\frac{E_J}{2} \sum_{n} \left\{ |n\rangle \langle n+1| + |n+1\rangle \langle n| \right\}$$

1次元TBモデル ⇒ Bloch band

超伝導電荷量子ビット

2018/8/3

超伝導電荷量子ビット

2018/8/3

• $\sigma^{Z} = |n = 0\rangle\langle n = 1| + |n = 1\rangle\langle n = 0|$

物理的にアクセスできるのか…?

・ 接合間へのMW電圧Uの印加により制御可能
・ 超高感度電荷センサ→電圧Uの揺らぎに弱い

超伝導トランズモン量子ビット

15

超伝導トランズモン量子ビット

 $H = \frac{(2e)^2}{2C} \left(|n\rangle \langle n| - n_g \right)^2 - \frac{E_J}{2} \Sigma[|n\rangle \langle n+1| + |n+1\rangle \langle n|]$ 個数が確定する方がいい 個数が揺らぐ方が気持ちいい ここで議論していたのは、(古 典)揺らぎを(量子)揺らぎの 導入で抑え込もうというアイ ディアです。とてもユニークで すね。 粒子数に広がり(揺らぎ幅)が あらわれることにより、粒子 数が確定しているパラメータ Fig2 in 領域に対して、古典的な電 荷揺らぎによるデコヒーレン DOI: /10.1103/PhysRevA.76.042319 スを小さくできます。通常は 電荷エネルギーをE C= (e/2C^2)と定義すると E J/E Cを50-80に設定します。 2018/8/3

電荷オフセット U の 印加量は誰も知らない =環境雑音に強い

https://cdn.technologyreview.com/i/i mages/34315884280bc0e7393d2o.jpg ?sw=1024&cx=0&cy=157&cw=3504&c h=1971

IBMQ 16Q

回路量子電磁力学による記述

• 調和振動子により近似

 $H/\hbar = \omega_q \left(\hat{a}^+ \hat{a} + 1/2\right)$

 最低準位が量子ビット空間に なるように非調和性
 Kerr効果を導入

Fig 2(c) in 電子情報通信学会 会誌 Vol. 10, p400- (2018)

量子ビットー共振器間/量子ビット $H_{int}, \hbar = g(\hat{a}^+ + a)(\hat{b}^+ + \hat{b}) + h.c.$

> 電気双極子相互作用 (キャパシタ相互作用)

他の自由度/共振器・量子ビット等

回路量子電磁力学による記述

- ・ 調和振動子により近似 $H/\hbar = \omega_q \left(\hat{a}^+ \hat{a} + 1/2 \right) + \alpha \left(\hat{c}^+ \hat{c} \right)^2$
- 電磁界計算による結合
 連成調和振動子の解析

Fig 2(c) in 電子情報通信学 会 会誌 Vol. 10, p400-(2018)

中村研 量子ビット 正面図

玉手修平,田渕豊,河野信吾, Akhil Pratap Singh,部谷謙太郎, Amarsanaa Davaasuren, 中村泰信,超伝導量子回路を用いた二次元量子ビット配列の基本設計法(II),日本物理 学会 第73回年次大会, 25aK203-2 (2018)

• 非調和性を後処理にて導入・動作解析 ⇒ 設計

中村研 量子

ビット 側面

义

量子ビットの電磁波工学的分類

量子ビットの電磁波工学的分類

量子ビットの制御

NMR/ESR的に行う
 2準位に共鳴するマイクロ波を印加

輸入されたNMR/ESR技術 エコー : Hahn, CPMG, Rotary, SpinLocking, XY8 相関測定: COSY, BIRD (by Weitekamp & A.Pines) 多重共鳴: 交差共鳴, ENDOR, ELDOR, DEER 複合パルス等

超伝導業界にて開発されたもの Qiskit-backend-information/IBMQ

相関測定: JAZZ (BIRDの改変) 多重共鳴: Cross Resonance 周波数分解: SWIFT (CNOTゲート in 溶液NMRと等価) Table ζ_{ij}/2π in https://github.com/Qisk it/qiskit-backendinformation/tree/maste r/backends/rueschlikon /V1

量子ビットの制御

・ 電流パルスによる非断熱操作 ∧

共振器誘起 iSWAP (USTC) 共振器誘起 Control-Z (Delft)

電流パルスによる断熱操作

直接 Control-Z (Google)

量子ビットの観測

• 読み出しパルスエネルギー 0.01-0.05 fW/MHz

量子ビットで遊ぶ

Nature 534, 222-226 (2016)

異方性のある
 強磁性相互作用

Eq1 & 2 in DOI:10.1038/nature17658

Fig 2 in DOI:10.1038/nature17658

フェルミ粒子の模擬実験

arXiv: 1501.07703 Nat. Comm. **6**, 7654 (2015)

粒子を量子ビットに割り当て

Fig 1(b) Right, DOI: 10.1038/ncomms8654

符号化された反交換関係を確認する

= 0 = 0

Hermitian

Hermitian

Nat. Comm. 6, 7654 (2015)

フェルミ粒子の模擬実験

ハバード模型の実装

絶縁体⇒金属相への遷移 (2サイト)

Fig 1(a) Potential, DOI: 10.1038/ncomms8654

符号空間のハミルトニアンを実 量子ビット空間に実装 U₁₄ != U₂₃

Fig 4(a) Q Circuit, DOI: 10.1038/ncomms8654

Fig 5, DOI: 10.1038/ncomms8654

トポロジカル励起の操作実験 PRL 121, 030502 (2018)

 $P(\gamma) = \bigotimes_{i=1}^{6} (\cos \gamma Y_i + \sin \gamma X_i)$

arXiv: 1608.04890

(工学的議論) 誤りのない量子コンピュータ

従来エレクトロニクス制御 (70%) と材料・ファブ改善 (30%) or 90%の理論 (しきい値) 改善

30

2018/8/3 (図:CEA Institut Nanosceiences Et Cryogene)

ゲート型量子コンピュータ

• 量子論理ゲートは「しきい値動作」ではない

ゲート型量子コンピュータ

• 量子論理ゲートは「しきい値素子」ではない

³⁴ **=巨大なアナログ受動回路** ・量子論理ゲートは「しきい値素子」ではない

半導体記憶装置(SSD)

1	https://www.orbitalstore.mx/m	e	磁気記憶装置(HDD)	
	dia/magpleasure/mpblog/uplo d/6/a/6a451f878e67b95f14ec aad81a5e95d.jpg p		http://pluspng.com/img- ng/hard-drive-png-hd-hard- disc-png-harddisk-hd-png- 1200.png	光記憶装置(DVD-RW)
				http://evmhistory.ru/i mages/safekeeping/dv drwm1.jpg

半導体記憶装置(SSD)

https://www.orbitalstore.mx/me dia/magpleasure/mpblog/uploa d/6/a/6a451f878e67b95f14edd aad81a5e95d.jpg

電荷の集団が情報を記憶 (Since 1972)

磁気記憶装置(SSD)

http://pluspng.com/imgpng/hard-drive-png-hd-harddisc-png-harddisk-hd-png-1200.png

> https://17inch.c.blog.sonet.ne.jp/_images/blog/_1b0/17inch/Head3bc47d.png

磁石が情報を記憶

磁石が情報を記憶=スピンの磁気秩序が情報を記憶

量子状態を堅固に守る 量子誤り訂正=符号化/復号化

 Fight Entanglement with Entanglement (Preskill, 1997)

*千-1万物理量子ビット/1論理量子ビット

要求されるクレイジーなアナログ精度

• QPSK (Quadrature-phase shift keying)

https://upload.wikimedia. org/wikipedia/commons/t humb/8/8f/QPSK_Gray_C oded.svg/220px-QPSK_Gray_Coded.svg.pn g

40

https://jp.tek.co m/sites/default/ files/media/ima ge/A003_4382-L.jpg

http://www.riec.tohoku.ac.jp/riecnews/lab/nakazawa/images/ graph02.jpg

 2°

発振器の位相雑音を体感する

• 搬送波周辺の位相揺らぎに起因

量子ビットへの悪影響

• 制御波形位相の時間変化するゆらぎ

発振器の位相雑音を体感する

誤り符号化/復号化手法

誤り符号化/復号化手法 =ハードウェアアーキテクチャの決定

⇔ 2次元面1層隣接相互作用⇒2層(層間相互作用有り)

😐 Qubit (Spin=1/2) ⇒ 🙁 2次元面1層 ⇒ Qudit (Spin>1/2) 3次元隣接相互作用

まとめ

• 回路の量子物理学

- 超伝導量子ビット
- 量子ビットの遊び方

• 符号化・復号化とHWアーキ

• しきい値とアナログ精度

