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Quantum computing devices
superconducting qubit
topological qubit (Majorana fermion ....)

h condensed-matter

physics



Today’s Talk

Quantum Information

Condensed Matter Physics
Statistical Mechanics



Condensed Matter Physics

- to understand physical properties of materials

- classification of states of matter into distinct “phases”
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simple model: (classical) Ising model

H=J Z U]Z'U/i
(7,k)



Classical Statistical Mechanics

In the equilibrium, each configuration appears with the probability

1 _ H({o;
Plos} = ¢ BH(o;})
(Gibbs ensemble)
Z — Z 6_5H({03})
105} 1
B=—

kT
Statistical expectation value



Order Parameter

ordered phase TC disordered phase
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simple model: (classical) Ising model H=1J ) ojo}
(4,k)

In the case of Ising model, naively the order is characterized by
the “order parameter” m = (o7)

m = 0 : disordered

However, symmetry implies m=0 always!!
m # 0 : ordered 4 y 1mp 4



Spontaneous Symmetry Breaking

The ordered phase exhibits “spontaneous symmetry breaking” (SSB)

How to characterize the SSB?

i) infinitesimal field trick H=1J) ojoi—h) o
(4:k) J
m = lim lim (0;)
h—+0V —o0 h: magnetic field

m = 0 : disordered
m # 0 : ordered

ii) long-range order (correlation)

2 .
m? = lim_(0707) — (05)(07)



Correlation and Information

A

4
- J

Mutual information (classical)

I(X,Y) = S(X)+ S(Y) — S(X,Y)

Assuming the spin inversion and exchange symmetry,

I(01,02) = %lOg (1= (0102)°) - <01202> 0 ( j: 222;)

maximum mutual information log2 for (0102) = %1

9



Is the single spin enough!

lim (o;0%) = 0 no magnetization
rik—00" ° = no long-range order?

No! There can be different types of long-range orders...

spontaneous dimerization Si - Sit1
m—3) P P P
P ) e P G

“scalar chirality” S, - (gj X _)k.)




Mutual Information Between Spin-Pairs

+ + A1, 42:B1,B2 + +
Al A2 Bl B2

1
IA1,42:B1,B2 =§{(1 —2(0A41042) — (0Aa10B1) +2(0a10B2) — (0A20B2) + (0 A10420B20B1))

1 —2(oca1042) — (0Aa10B1) +2(0Aa10B2) — (0420B2) + (0410420820 B1)
(1 —(ocA1042))?

log

1 —(ca10B1) + (0A20B2) — (0A10420B20B1)
1 — (0A1042)?

+2(1 — (oca10B1) + (0420B2) — (0 A10420B20B1)) log

+ (14+2(ca1042) — (ca10B1) — 2(cAa10B2) — (0 A20B2) + (0A10420B20B1))

14+ 2(oca1042) — (ca10B1) — 2(0cAa10B2) — (0A20B2) + (0A104A20B20B1)

log
(1+ (ca1042))?

1+ (ca10B1) — (0A20B2) — (0 A10420B20B1)
1 — (oA1042)2

+2(1+ (0 a10B1) — (0420B2) — (0 A10420B20B1)) log

+ (1 —2(ca1042) + (0a10B1) —2(0a10B2) + (0A20B2) + (0A1042082081))
1 —2(ca1042) + (ca10B1) — 2(0Aa10B2) + (0A20B2) + (0A10420B20B1)
(1 —(cAa1042))?

log

+ (14+2(ca1042) + (0a10B1) +2(0a10B2) + (0A20B2) + (0A10420B20B1))

log 1 —2{(ca1042) + (ca10B1) — 2(cAa10B2) + (0 A20B2) + (0 A10420B20B1) \

(1 —(ca1042))?



Equilibrium can be Simple
D Ising model Y — _JZUjUj+1
000000000

No SSB at any T>0, but exactly solvable

r ’, (c0A10B1) = (tanh 5)2T1

2 —_
Al A2 B2 B1 (0A10420B2051) = tanh?("1~"2) 3

Al and Bl can “talk to each other”
only through A2 and B2!

IA1,42;B1,B2 = LA2;B2 | .
(cf. transfer matrix solution)



Quantum Statistical Mechanics

H Hamiltonian now a Hermitean operator
huge Hilbert space for a macroscopic system:
dimension = 2N for N spin-1/2

1
Peq = —e P 7 = Tre P

/
(0) = Tt (Opeq)

Reduces to classical statistical mechanics
when Hamiltonian is diagonal (in a local basis)

T—0(B— )
(O) = (¥|O]¥y)
'Wy) ground state



Quantum Fluctuations

Example: quantum transverse Ising model

A D

ordering \ disordering
favors spins aligned to the ‘flips the spin
same direction 1 or || Tl

As a result, even the ground state is nontrivial!



Quantum Phase Transition

in the QTI model
— z _Z T
H— — Z O'jO'k— I_ZO']
(7,k) 7

ordered phase [ = [, disordered phase

A I'

Quantum Critical Point

Very similar to the thermal phase transition in the classical Ising model
In fact, there is a mathematical mapping between

quantum transverse Ising model in d space dimensions
and classical transverse Ising model in d+1| space dimensions




SSB and Order Parameter

Can be defined similarly to the classical case

i) infinitesimal field trick

= i 1] -
S e V1—I>noo<0-°7>
m = 0 : disordered
m # 0 : ordered

ii) long-range order (correlation)

2 .
m? = lim_(o50%) — (07) (o)



Is the single spin enough!

lim (o;0%) = 0 no magnetization
rik—00" ° = no long-range order?

No! There can be different types of long-range orders...

spontaneous dimerization Si - Sit1
m—3) P P P
P ) e P G

“scalar chirality”

Also the case in quantum statistical mechanics
(and even more subtleties...)



Characterizing Arbitrary Order?

~

A B

J

Suppose that the total system is in a pure state
(e.g. the ground state)

No entanglement between A & B — no correlation

pa = Trp|¥)(Y]|
measure of entanglement
Sg =-—Tr [PA log PA] (von Neumann) entanglement entropy

|18



Scaling of Entanglement

Consider an infinite system

-

e

J

Entanglement entropy between A & outside

Typical (random) state:

Na eigenvalues ~ |/Nj

SEOCNAOCVOIA

19

PA  “random’”

Na : number of spins in A

“volume law”’



Foundation of Statistical Mechanics

1
Gibbs ensemble:  peq = 26—571

Why? (foundation of statistical mechanics)

Modern view: the “true” density matrix is not necessarily
given by the Gibbs ensemble
the entire system may be in a pure state

Why does statistical mechanics work, then?

Physical observables are (mostly) local

If the reduced density matrix for any local region is
identical to that from the Gibbs ensemble, such a state
is “thermal”

(indistinguishable from the Gibbs ensemble)

20



Typical Pure State is Thermal

HIV,) =F, |V,
Consider an energy shell Ya) W)

F<FE,<FE+AE

Hilbert space of the shell (superposition of the eigenstates)

Typical pure state in the Hilbert space ) = Z Ca|Va)

(with respect to the Haar measure) -

Pospescu (2006), Sugita (2006), Tasaki (2015), ...

21



Thermalization from an Initial State

Generic state
(not necessarily typical) V) = Z Ca|¥a)
within the energy shell -

t — 00
(O(t)) = Z CZ’Caez(Ea/_Ea)t<\Ija‘O|\Ija> — Z ‘Coz‘2<\:[joz|0‘\1}oz>

o,

If any eigenstate within the energy shell is thermal
[strong Eigenstate Thermalization Hypothesis (ETH)]
the generic state thermalizes!

No proof of strong ETH, but it is believed to hold for
“typical” non-integrable, translation-invariant systems.....
(some numerical evidences, but also some counter-examples)

22



Necessary Condition for ETH

Consider an infinite system

f 2

e

\ J

If the ETH is satisfied, the reduced density matrix
must be thermal =

entanglement entropy must follow the volume law

23



Area Law

“Volume law” of the entanglement entropy implies the
difficulty in numerical calculation

However, some states of physical interest has smaller entanglement

In particular, the entanglement entropy in the ground state of a
typical “local” Hamiltonian is believed to follow the “area law”

3 2

Sr o« Area of 0A

(boundary length in 2D
constant in | D)

24



Entanglement in | D Ground States

Wo) = N Cirigenin|i1) ® |iz) ... ® |in)

XA
Successive Schmidt decompositions Py =) Aol @) ® | @G
a=I

|\I]O Z Aal]'—wééllaz QZFZO?QO(?, *ce ‘Z]-> @ |7’2> @
Loy bois}

“Matrix Product State” AKLT 1987, Fannes-Nachtergale-Werner 1992, Vidal 2003, ....

25



Matrix Product States
Wo) = > Al anAaslZya, - li1) @ liz) @ ...

“virtual (bond) indices”

Q5 Qj+1 aj:1,2,...,x

by m; = 1, C ooy d
“physical indices”

26



What does it mean?

Generic pure quantum state

Vo) = N Cirigenin 1) ® |iz) ... ® |in)

114124...51n

d: dimension of
number of parameters: - menion 9

local Hilbert space

(Translation-invariant) MPS

‘qjo Z )\alrrf)éllag a2]'—w(l)?2043 *c |Z]-> ® |22> ®
{ogbiiis}
number of parameters: ¢y2 < q- !

MPSs are very special among generic quantum states!

27



Significance of MPS

Significance of MPS:

Any gapped ground state in | D can be approximated
by a MPS with a finite bond dimension X

gapped (off-critical)

continuum of
exclted states

a
I 29ab ground state

28

[Hastings 2007]

gapless (critical)




Why does MPS work??

Gapped ground states: finite correlation length

A B
B A2 A A A ARSI AAS S S S S

Bipartite entanglement entropy between A & B :

Sk ~ constant (" Area Law”)
even for an infinitely long system

Schmidt decomposition
) =) N[5 @[T
Y

need O(e”?) ~ const. terms in the sum!

29



Applications...

Density-Matrix Renormalization Group (DMRG)

powerful numerical approach to 1D quantum many-body problems

White 1992]

DMRG = variational methods with MPS

The density-matrix renormalization group in the age of matrix
product states

Ulrich Schollwock

Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, University of Munich, Theresienstrasse
37, 80333 Munich, Germany
Institute for Advanced Study Berlin, Wallotstrasse 19, 14159 Berlin, Germany

New perspectives, systematic improvements,.....

30



Many-Body Localization

Disordered interacting system = “Many-Body Localization”
Breakdown of thermalization ~ breakdown of ETH

2000

1500 ~-eigenstate

-3 10001 entanglement
20 o0l entropy

—_—

~

Ol

Vosk-Huse-Altman 2014

—500}

—10005 100 200 300 200 500

= MPS also works in MBL phases even at finite energies!

31



Righer Dimensions
Generalization of MPS:““tensor network states”

b W, W, W,

tensor quantum state
‘w\ — )

l Valence Bond Ground States
/’i\ e ,”l‘\ in Isotropic Quantum Antiferromagnets
X.. :S'\(‘__;/h{ ..‘)\'—- }/‘t ’7\ 1 2 . - W2 -2
\ ‘ ’ ' = Ian Affleck ***, Tom Kennedy“ **, Elliott H. Lieb“ *** and Hal Tasaki* ***
N / ' !
I' l [AKLT 1988)
Fig. 3.2. The VBS state on the hexagonal lattice.
\. / \ / .\h ./ Each dot, line, and dotted circle represents a spin
T / 1/2, a singlet pair, and the symmetrization of three

spin 1/2’s to create a spin 3/2
32



S, o« Min[# Bonds(y , )]

MERA

Multiscale Entanglement

Renormalization Ansatz
[Evenbly-Vidal 2009]

tree-like structure
for | D critical states

log L
AdS/CFT Sp o log
@ 4ds,, Relation to
y gauge-gravity duality
’ (AdS/CFT)
B Figure from

S o« Min[Area] [Nozaki-Ryu-Takayanagi 2012]

33



Correction to Area Law

N

pa = Trp|¥)(¥|

A B Sg = —Tr|palogpa]

J

In 2D, the area law implies Sg ~ £

£ :boundary length

X is non-universal constant, but there can be a
universal correction of O(|)!

34



SSB phases

e.g. Ising model in the ordered phase

W)~ — (|1 )4 e 1)

1

Sg ~ afl + log 2

“extra information’’

Stephan-Furukawa-Misguich-Pasquier 2009

35



Ground-State Degeneracy

“Order” ~ Spontaneous Symmetry Breaking

17T

(non-accidental) ground-state degeneracy

36



Topological degeneracy (cf. FQH)

ground-state degeneracy N
depending on topology of the system

P>

“genus” g: # of "holes” for the 2D surface

not a consequence of a ordinary SSB.....
a signature of a topological order!

degenerate g.s.: indistinguishable by any local operator



Frequently Asked Questions

Q1: What is “topological order”?

Q2: Why should we care about the topological
degeneracy?
| am not planning any kind of experiment
with various genus g !

A: topological order itself cannot be “seen”
directly, but is a useful concept behind
several nontrivial physics (some of which
may be measurable in experiments)

38



But sometimes.....

no g.s. degeneracy

topological for any g
degeneracy 39 - /
\ >
—  hlJ

/

No order

(no standard SSB)

R

Quantum Critical Point

Why is there a QPT even though there is

no order in the both sides?

---- because one side has “topological order”

39



I”

A “practical” definition

Separated by quantum phase transitions
= quantum phases

If a nontrivial phase cannot characterized by
any local order parameter (or SSB),
it has a “topological order”

Q: do we gain anything, compared to
just knowing quantum phase transitions?

Q: what does “nontrivial phase” mean?
40



It appears that many ‘exotic’ physics are
rather closely related.

“Topological order” is a (hypothetical) concept
which is behind the exotica.

Topological degeneracy

and more?? - Fractionalization

“Edge states”

Fractional statistics Emergent gauge structure

41



11-D Supergrawnty

Type ILA E8 X E8 Heterotic

O(32) Heterotic

Type 1B Type I

http://www.sukidog.com/jpierre/strings/mtheory.htm

42



Entanglement Entropy

~

pa = Trp|¥) (Y]

A B Sg = —Tr[palogpa]

Sg ~al £ : Boundary length
/ \ universal

“area law” term  “‘topological entanglement entropy”
(non-universal Kitaev-Preskill / Levin-Wen 2006

coefficient X) encodes “topological order”
4+ in the groundstate



Kitaev’s toric code
Kitaev 1997

Exactly solvable model for *“Z; topological phase”

@ Q-




Construction of GS

Dual plaquettte

B,|vac,) = |vac,)

[Bpa w* ['7%” =0

Wil = 11 o B,|¥) = )

JEY 45



Dual plaquettte

AWEFT] = Woy]

Al ) = A YW vacs) = Y Wy vacs) = |¥)

Y

W) isagroundstate of H = — ZAS — ZBP
S p

Likewise, [¥) =) W?[¥*]|vac;) for 7° closed-loops

7? 46 on original lattice



|
-

qi

(Jz:l\

Bipartition of the
system

Each “snapshot” of the
groundstate
can be classified by
the string crossings

at the boundary [

47



Reduced Density Matrix

{QI}

|‘I’?ql}) superposition of all the closed-loop strings states in
region R (=A or B), for the given boundary configuration {qi}

= Tepl ) (9] 3 [0, )y |
{a}
Number of possible string configurations within region A:
= number of closed-loop string configurations
completely contained in region A

independent of the boundary configuration {qi}
(Hamma-loniciou-Zanardi 2005)

Sg = log N, Ng: # of boundary configurations {qJ}



Entanglement Entropy

Each boundary link may be crossed
(g=1) or not (g=0) by strings
N,=2% 1
¢ : Boundary length (# of links on the boundary [)

In fact, the number of string crossings at the boundary
must be even, since the strings form closed loops

N, =251
Sg =log N, = £log?2 — log 2

“area law” / \ “topological EE”

49



Characterization of Topological Order

In general topologically ordered phase in 2+1| dimension:

SE ~ af — Ytopo

Ytopo — lOg D

_ 2
D = \/Z dg “total quantum dimension”
a

ds: quantum dimension of anyon a

Topological Entanglement Entropy (TEE)
partially characterizes the topological order

50



Topological Degeneracy
I

4 - 2
- e R
g U G
4 Y, U
/4 /4 4
! H H
[ ] 1 1
1 [ ] [}
1 | |
| 1
| | 1 1
‘ 1 | )
q 1 |
‘ kY K
! s u s
[ ] \‘ \‘
' S S

JAN

Strings can form winding loops along the circumference

¥) = 3 Wovac)

Winding number is conserved modulo 2
= doubly degenerate GS (topological degeneracy!)

€0,1) winding number = 0,1 (modulo 2)

51



Topological Degeneracy & Qubit

Topologically degenerate groundstates could be used as
a “‘qubit” which is robust against decoherence

The topologically degenerate groundstates are not
connected by local operators = suppression of decoherence
(manipulation & measurement become nontrivial, too)

Error correction procedure
= “toric code”

Kitaev 1997

52



. EE and winding number

Consider one of the

] ! ! ‘¢ 99

:“ g\ pure” GS £, )
A B (‘Cut”

JAN
Crossing # at the cut = winding # (mod 2)

1 A B A B
&) = mZ ("I’{qz},o”‘l’{qz}.l)+|‘I’{qz}.1>|‘1’{qz},o>)
- T {ar}

crossing # at the cut (mod 2) within A or B

TEE vanishes, owing to

S = Llog 2
the extra entanglement

53



EE in general groundstate

W) = coléo) + c1]é1)

S = Llog?2 —@ cl {poD

lco + c1)?
2

- leo—el?
P1 = 5

p—

Po =

Cl {pp Z Pu 100 Pu

0 < Scl({ﬁOaﬁl}) < log‘2

0 < ,\,,,(Cylindcr) < 1Og2

TEE dependence on the GS

pointed out for special cases by
Hamma-loniciou-Zanardi 2005

“classical entropy”

Dong-Fradkin-Leigh-Nowling 2008
Zhang-Grover-Turner-MO-Vishwanath 2012

54



EE on torus

Similar analysis of EE on torus (4 topologically degenerate g.s.):

TEE dependence on the choice of the ground state

v

“modular S-matrix’’

v

Mutual statistics of anyons

More detailed characterization of
the topological order!

55



Summary

(Quantum) information gives a useful perspective in
old and new problems in condensed matter physics

some examples:
formulation of tensor-network states
improvements of tensor-network based numerical methods
characterization of topological states in terms of entanglement

This can also help developments in condensed matter
(such as topologically protected qubits)
also useful for quantum information processing

56



