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guantum algorithms with amplitude amplification [Brassard+ 1999]
guantum algorithms for element disjointness [Ambainis 2002]
guantum algorithms for Gauss sums [van Dam + 2002]

guantum algorithms for solving Pell’s equation [Hallgren 2002]
guantum algorithms for quantum simulations [Childs 2004]
guantum algorithms for hidden subgroups [Kuperberg 2004]
quantum algorithms for finding an unit group [Hallgren 2005]
quantum algorithms for triangle finding [Magniez+ 2005]

guantum algorithms for computing knot invariants [Aharonov+ 2006]
guantum algorithms for data streams [Le Gall 2006]

guantum algorithms for hidden nonlinear structures [Childs+ 2007]
guantum algorithms for linear equations [Harrow+ 2009]

guantum algorithms for group isomorphism [Le Gall 2010]

guantum algorithms for matrix multiplication [Le Gall 2011]

quantum algorithms using span programs [Belovs 2011]

guantum algorithms for matrix inversion [Ta-Shma 2013]

guantum algorithms for combinatorial triangle finding [Le Gall 2011]
guantum algorithms for pattern matching [Montanaro 2014]

quantum algorithms for distributed computation [Le Gall and Magniez 2017]

@hor’s algorithm (1 994)\ ( Grover’s algorithm (1 996)\
5= Ko iR = ERR




guantum algorithms with amplitude amplification [Brassard+ 1999] =t ?_7 LY XAE

guantum algorithms for element disjointness [Ambainis 2002]

guantum algorithms for Gauss sums [van Dam

R

+2002] https://math.nist.gov/quantum/zoo/

guantum algorithms for solving Pell’s equation
guantum algorithms for quantum simulations [C
quantum algorithms for hidden subgroups [Kup
quantum algorithms for finding an unit group [H
quantum algorithms for triangle finding [Magnie
guantum algorithms for computing knot invariar
guantum algorithms for data streams [Le Gall 2
guantum algorithms for hidden nonlinear struct
guantum algorithms for linear equations [Harroy
guantum algorithms for group isomorphism [Le
guantum algorithms for matrix multiplication [Le
quantum algorithms using span programs [Belc
guantum algorithms for matrix inversion [Ta-Sh
quantum algorithms for combinatorial triangle fi
guantum algorithms for pattern matching [Mont
guantum algorithms for distributed computation

Quantum Algorithm Zoo L OO~ ')y d

This is a comprehensive catalog of quantum algorithms. If you notice any errors or omissions, please
email me at stephen.jordan@nist.gov. Your help is appreciated and will be acknowledged.

Algebraic and Number Theoretic Algorithms

Algorithm: Factoring
Speedup: Superpolynomial
Description: Given an n-bit integer, find the prime factorization. The quantum algorithm of Peter Shor

solves this in 5(713) time [82,125]. The fastest known classical algorithm for integer factorization is

: ; - : o O(nY :
the general number field sieve, which is believed to run in time 20(n") The pest rigorously proven

upper bound on the classical complexity of factoring is 0(2"/3+°(1)) [252]. Shor's factoring algorithm
breaks RSA public-key encryption and the closely related quantum algorithms for discrete logarithms
break the DSA and ECDSA digital signature schemes and the Diffie-Hellman key-exchange protocol.
A quantum algorithm even faster than Shor's for the special case of factoring “semiprimes”, which are
widely used in croptography is given in [271]. There are proposed classical public-key cryptosystems
not believed to be broken by quantum algorithms, cf. [248]. At the core of Shor's factoring algorithm is
order finding, which can be reduced to the Abelian hidden subgroup problem, which is solved using
the quantum Fourier transform. A number of other problems are known to reduce to integer
factorization including the membership problem for matrix groups over fields of odd order [253], and
certain diophantine problems relevant to the synthesis of quantum circuits [254].

Algorithm: Discrete-log

Speedup: Superpolynomial

Description: We are given three n-bit numbers a, b, and N, with the promise thatb = a®* mod N
for some s. The task is to find s. As shown by Shor [82], this can be achieved on a quantum computer
in poly(n) time. The fastest known classical algorithm requires time superpolynomial in n. By similar
techniques to those in [82], quantum computers can solve the discrete logarithm problem on elliptic
curves, thereby breaking elliptic curve cryptography [109]. The superpolynomial quantum speedup
has also been extended to the discrete logarithm problem on semigroups [203, 204]. See also Abelian
Hidden Subgroup.

Algorithm: Pell's Equation

Speedup: Superpolynomial

Description: Given a positive nonsquare integer d, Pell's equation is z? — dy2 = 1. For any such d
there are infinitely many pairs of integers (x,y) solving this equation. Let (Cbl g yl) be the pair that

minimizes * + y\/c—l If d is an n-bit integer (i.e. 0 < d < 2"), (xl, yl) may in general require

278 1F (20184E7 H i )
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guantum algorithms with amplitude amplification [Brassard+ 1999]
guantum algorithms for element disjointness [Ambainis 2002]
guantum algorithms for Gauss sums [van Dam + 2002]

guantum algorithms for solving Pell’s equation [Hallgren 2002]
guantum algorithms for quantum simulations [Childs 2004]

guantum algorithms for hidden subgroups [Kuperberg 2004]
quantum algorithms for finding an unit group [Hallgren 2005]
quantum algorithms for triangle finding [Magniez+ 2005]

guantum algorithms for computing knot invariants [Aharonov+ 2006]
guantum algorithms for data streams [Le Gall 2006]

guantum algorithms for hidden nonlinear structures [Childs+ 2007]
guantum algorithms for linear equations [Harrow+ 2009]

guantum algorithms for group isomorphism [Le Gall 2010]

quantum algorithms for matrix multiplication [Le Gall 2011]

quantum algorifams using span programs [Belovs 2011]

quantum algorithas for matrix inversion [Ta-Shma 2013]

guantum algorithm¥, for combinatorial triangle finding [Le Gall 2011]
quantum algorithms Wr pattern matching [Montanaro 2014]
quantum algorithms fodistributed computation [Le Gall and Magniez 2017]
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guantum algorithms with amplitude amplification [Brassard+ 1999]
guantum algorithms for element disjointness [Ambainis 2002]
guantum algorithms for Gauss sums [van Dam + 2002]

guantum algorithms for solving Pell’s equation [Hallgren 2002]
guantum algorithms for quantum simulations [Childs 2004]
guantum algorithms for hidden subgroups [Kuperberg 2004]
quantum algorithms for finding an unit group [Hallgren 2005]
quantum algorithms for triangle finding [Magniez+ 2005]

guantum algorithms for computing knot invariants [Aharonov+ 2006]
guantum algorithms for data streams [Le Gall 2006]

guantum algorithms for hidden nonlinear structures [Childs+ 2007]

quantum algorithms for linear equations [Harrow+ 2009] G———— ?ﬁ‘ﬁl] DI ﬁ{ﬁ 2 %@GC

quantum algorithms for group isomorphism [Le Gall 2010] HE = L= XA
guantum algorithms for matrix multiplication [Le Gall 2011] ;k &b 6 E%TJ )

quantum algorifams using span programs [Belovs 2011] %%*&miﬁ“mﬁﬁ @Efﬁ‘é'@ 4
quantum algorithas for matrix inversion [Ta-Shma 2013]

guantum algorithm¥, for combinatorial triangle finding [Le Gall 2011]

quantum algorithms Wr pattern matching [Montanaro 2014]

quantum algorithms fodistributed computation [Le Gall and Magniez 2017]
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quantum algorithms with amplitude amplification [Brassard+ 1999]
guantum algorithms for element disjointness [Ambainis 2002]
quantum algorithms for Gauss sums [van Dam + 2002]

quantum algorithms for solving Pell’s equation [Hallgren 2002]

quantum algorithms for quantum simulations [Childs 2004 <G—————

quantum algorithms for hidden subgroups [Kuperberg 2004]
quantum algorithms for finding an unit group [Hallgren 2005]
quantum algorithms for triangle finding [Magniez+ 2005]

quantum algorithms for computing knot invariants [Aharonov+ 2006]
guantum algorithms for data streams [Le Gall 2006]

quantum algorithms for hidden nonlinear structures [Childs+ 2007]

quantum algorithms for linear equations [Harrow+ 2009] G————t——— ff‘ﬁl] DI

guantum algorithms for group isomorphism [Le Gall 2010]
quantum algorithms for matrix multiplication [Le Gall 2011]
quantum algorifams using span programs [Belovs 2011]
quantum algorithyas for matrix inversion [Ta-Shma 2013]
quantum algorithm¥, for combinatorial triangle finding [Le Gall 2011]
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F. Le Gall and F. Magniez. Sublinear-Time Quantum Computation of
the Diameter in Distributed Networks. Proceedings of the 37" ACM
Symposium on Principles of Distributed Computing (PODC 2018).

Also arXiv: 1804.02917.

STEGET R OB E LRI LT,
T AT ALK @EHBRETF T NV A LMD TER T




Outline: Quantum Distributed Computing

v" From the perspective of computability and computational complexity,
guantum distributed computing has mostly been studied in the framework

of 2-party communication complexity

v" Relatively few results focusing on more than two parties:

» exact quantum protocols for leader election on anonymous networks
[Tani, Kobayashi, Matsumoto 2007]

» study of quantum distributed algorithms on non-anonymous networks

[Gavoille, Kosowski, Markiewicz 200¢
lkin, Klauck, Nanongkai, Pandurangan 2014

negative results: show impossibility of quantum distributed
computing faster than classical distributed computing for many
important problems (shortest paths, minimum spanning tree,...

p

Question: can quantum distributed computing be useful?
(on non-anonymous networks)

Our result: Yes, we can compute the diameter of the network faster!



Eccentricity and Diameter

Consider an undirected and unweighted graph G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

(ERES

D = max {d(u,v)}

uvev ‘\

—d(u,v) = distance between u and v




Eccentricity and Diameter

Consider an undirected and unweighted graph G = (V,E) with n nodes

The diameter of the graph is the maximum distance between two nodes

ERES
IEE) D = maxv{d(u,v)}

u,v € ‘\

= max {ecc (u)}

—d(u,v) = distance between u and v

The eccentricity of a nhode u is defined as

(R o 2%)

ecc (u) = max {d(u,v)}
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Classical Distributed Computation of the Eccentricity

Let’s write n = number of nodes

v' Each node represents a processor (with a unique ID)
v' Each edge represents a classical channel

v At each round only one short (i.e., O(log n) bits) message sent to each neighbor

CONGEST model (most standard model of synchronous distributed computation)
Complexity: the number of rounds needed for the computation
Computing eccentricities and the diameter are among the most fundamental tasks

example: at each round, a can send one message to ¢
b can send one message to C
c can send one message to a, one to b, oneto d and one to e

eCC
eCC
eCC
eCC
eCC
eCC
eCC
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Classical Distributed Computation of the Eccentricity

Let’s write n = number of nodes

v' Each node represents a processor (with a unique ID)
v' Each edge represents a classical channel

v At each round only one short (i.e., O(log n) bits) message sent to each neighbor

CONGEST model (most standard model of synchronous distributed computation)
Complexity: the number of rounds needed for the computation

Computing eccentricities and the diameter are among the most fundamental tasks

example: computation of ecc (a)
Hestiroolmhiodthainomnidanioetion

Computation of ecc (u):

Starting with u, each node broadcasts
its distance to u to its neighbors.
(Each node knows its distance to u
the first time it receives a message.)

complexity: ecc (u) rounds

The nodes then compute the
maximum of their distance (easy)




Classical Distributed Computation of the Diameter

Let’s write n = number of nodes
v' Each node represents a processor (with a unique ID)

v' Each edge represents a classical channel
v At each round only one short (i.e., O(log n) bits) message sent to each neighbor

CONGEST model (most standard model of synchronous distributed computation)
Complexity: the number of rounds needed for the computation
Computing eccentricities and the diameter are among the most fundamental tasks

Computation of the diameter D:

Congestion: what
should csend at | | All the nodes compute simultaneously

the next round? || their eccentricity using standard
technigues to handle congestions

first round of communication

complexity: ©(n) rounds (even if D is constant)
[Holzer+12, Peleg+12]

Output the maximum eccentricity




Computation of the Diameter

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum for an important problem in the
CONGEST model of distributed computing

Classical Quantum (our results)

Exact computation (upper bounds) O(n) O(vVnD)
[Holzer+12, Peleg+12]

Q(n) Q(\ﬁi 4- D) junconditional]
(Frischknecht+12] ﬁ(\/np) Earehicmsl

number of rounds needed tgompute the diameter (n: number of nodesD: diameter)

condition: holds for algorithms using only polylog(n)
qubits of memory per node

Exact computation (lower bounds)

the tilde notation removes polylog(n) factors

3/2-approximation (upper bounds) O(v/n + D) 0(3\/ nD + D)

[Lenzen+13,Holzer+14]

(3/2-g)-approximation (lower bounds) Q(n) Q(\/ﬁ + D) [unconditional]
[Holzer+12,Abboud+16]




Our Upper Bound

main result: sublinear-round quantum computation of the diameter whenever D=0(n)
(our algorithm uses O((log n)?) qubits of quantum memory per node)

first gap between classical and quantum for an important problem in the
CONGEST model of distributed computing

Classical Quantum (our results)

Exact computation (upper bounds) O(n) O(vVnD)
[Holzer+12, Peleg+12]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)



Quantum Distributed Computation of the Diameter

Let’s write n = number of nodes
v' Each node represents a quantum processor (with a unique ID)
v' Each edge represents a quantum channel

v At each round only one short (O(log n) qubits) message sent to each neighbor

quantum CONGEST model
Complexity: the number of rounds needed for the computation




Quantum Distributed Computation of the Diameter

Let’s write n = number of nodes

v' Each node represents a quantum processor (with a unique ID)
v' Each edge represents a quantum channel

v At each round only one short (O(log n) qubits) message sent to each neighbor

quantum CONGEST model
Complexity: the number of rounds needed for the computation

Computation of the diameter (decision version)

Given an integer d, decide if diameter = d
there is a vertex u such that ecc (u) =d

This is a search problem, so we can try to use Grover search:

1ifecc (u) =d
O otherwise

Find an element ue V such that f(u) = 1| with f(u) = -




Usual Grover Algorithm (from Nielsen-Chuang, page 251)

can be done locally -
= O( . . y O(+/n) times
m\ (log n) (i.e., without communication) ( 1)
\ /\ : \ [independent of|f
" oy FHmen — = Censure
qubits  — —

. . . N
oracle 'ndependent of f We compute of the diameter by implementing
workspace this circuit in the distributed setting:

One arbitrary node (say, node a) will —
depends onf | implement this circuit

(depends on the grap \\I }/ Phase:
m
. — ‘{- M ]0) — |O> t:E;:um: l
qubits [ I Vs |;1?> s —|-;g) H
G —_ oracle for z > 0
— |'1> _s (—l)f(-*r-)|:c)
oracle \—
workspace :
e iIndependent of f

1ifecc (u) =d
O otherwise

Find an element ue V such that f(u) = 1| with f(u) = -

remember: n = VI



Usual Grover Algorithm (from Nielsen-Chuang, page 251)

can be done locally -
= O( . . y O(+/n) times
m\ (log n) (i.e., without communication) ( 1)
\ /\ : \ [independent of|f
" oy FHmen — = Censure
qubits  — —

. . . N
oracle 'ndependent of f We compute of the diameter by implementing
workspace this circuit in the distributed setting:

One arbitrary node (say, node a) will —
depends onf | implement this circuit

(depends on the grap N A Phase:
m — \IL‘__ >m |0> — |O> <Mm |
qubits [ — i |z} — —|z) e
G _ oracle for z > 0
— |z) = (—=1)7@)|z)
oracle \—
workspace independent of f

To implement the oracle, the node a needs to communicate with the other nodes

Total number of rounds of communication = O(y/n x number of rounds to implement the oracle)




- Y4

Implementatl Node a introduces 1 register Z oy, |1)a]0)
Node a applies CNOTS Zuevaulwalu)

Node a sends the second register to ¢ z ay[ualudc

B S uev
Eaum“o) _ E Node c introduces 3 registers Zuevau|u>a|u>c|o> 0) |0)
= i Node c applies CNOTS Z g [Welw) [w) [w)
uev
Node ¢ sends the registers to b,e,d Z aulia [uelulp u)elu)g

Initially node a owns 2 a,|u)q

V={a5bicadaesfsg} uev
1. “Broadcast” this state, which gives [ecc(a) < D rounds]

/
> aulwalupludelghnewug
uev

2. The nodes implements the classical protocol [= D rounds]
for computing the eccentricity, which gives

> aulwalulpludchn)gludeln wglecew)a

uev




Implementation of the Oracle in O(D) rounds

2 a,|u)a|0)a - oracle - z a,|u)alecc(u))g

uev ] uev

Initially node a owns 2 a,|u)q

V={a5bicadaeafsg} uev
e 1. “Broadcast” this state, which gives [ecc(a) < D rounds]

> aulwalupludelghnewug
uev

2. The nodes implements the classical protocol [=D rounds]
G for computing the eccentricity, which gives

> aulwalulpludchn)gludeln wglecew)a

O =

3. The nodes revert Step 1 [ecc(a) = D rounds]




Usual Grover Algorithm (from Nielsen-Chuang, page 251)

can be done locally -
= O( . . y O(+/n) times
m\ (log n) (i.e., without communication) ( 1)
\ /\ : \ [independent of|f
" oy FHmen — = Censure
qubits  — —

. . . N
oracle 'ndependent of f We compute of the diameter by implementing
workspace this circuit in the distributed setting:

One arbitrary node (say, node a) will —
depends onf | implement this circuit

(depends on the grap N A Phase:
m — \IL‘__ >m |0> — |O> <Mm |
qubits [ — i |z} — —|z) e
G _ oracle for z > 0
— |z) = (—=1)7@)|z)
oracle \—
workspace independent of f

To implement the oracle, the node a needs to communicate with the other nodes

Total number of rounds of communication = O(y/n x number of rounds to implement the oracle)

= O(vnx D)




The Upper Bound

v" We have just described a O(y/n x D)-round quantum distributed algorithm
for computing (with high probability) the diameter

v With further work, the complexity can be reduced to O(v/nD ) rounds

Classical Quanturnr (our results)

Exact computation (upper bounds) O(n) O(vnD)
[Holzer+12, Peleg+12]




The Lower Bounds

Classical Quantum (our results)

ﬁ(n) ﬁ(\/ﬁ + D) [unconditional]
[Frischknecht+12] ﬁ( TlD) [conditional]

Exact computation (lower bounds)

classical lower bound via two-party’ cgmmunication complexity

v reduce DISJOINTNESS to the distributed computation of diameter [Frischknecht+12]
v the (two-party) communication complexity gf DISJOINTNESS is QQ(n) bits [Kalyanasundaram+92]

unconditional guantum lower bound

v' same reduction from DISJOINTNESS to/the diameter
v’ the (two-party) communication complexity of DISJOINTNESS is QQ(v/n) qubits [Razborov03]

conditional guantum lower bound

v if the quantum distributed algorithm for diameter uses few quantum memory per
node, then the computation of DISJOINTNESS can be done using few messages

v the (two-party) r-message communication complexity of DISJOINTNESS is
Q(r + n/r) qubits [Braverman+15]



Quantum Computation of the Diameter: Summary

main result: sublinear-round quantum computation of the diameter

first gap between classical and quantum for an important problem in the
CONGEST model of distributed computing

Classical Quantum (our results)

Exact computation (upper bounds) O(n) O(vVnD)
[Holzer+12, Peleg+12]

Q(n) Q(y¥/n + D) [unconditional]
[Frischknecht+12] ﬁ (\ /TLD) [conditional]

number of rounds needed to compute the diameter (n: number of nodes, D: diameter)

Exact computation (lower bounds)

O(n+ Dj

3/2-approximation (upoer bounds)
_enzen+13,Holzer+14]

(3/2-g)-approximation (lower bounds) Q(n) Q(\/ﬁ + D) [unconditional]
[Holzer+12,Abboud+16]
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F. Le Gall and F. Magniez. Sublinear-Time Quantum Computation of
the Diameter in Distributed Networks. Proceedings of the 37" ACM
Symposium on Principles of Distributed Computing (PODC 2018).

Also arXiv: 1804.02917.
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S. Bravyi, D. Gosset and R. Konig. Quantum Advantage with Shallow
Circuits. ArXiv: 1704.00690. Plenary talk at QIP 2018.
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