孤立量子多体系における 熱平衡化と量子情報の非局所化

量子情報・物性の新潮流 2018/08/01@物性研究所

東京大学大学院 工学系研究科 物理工学専攻

伊與田英輝

T. Yoshizawa, <u>E. Iyoda</u>, and T. Sagawa, PRL **120**, 200604 (2018) <u>E. Iyoda</u> and T. Sagawa, PRA **97**, 042330 (2018) <u>E. Iyoda</u>, H. Katsura, and T. Sagawa, arXiv:1806.10405

Outline

- ・1. 熱平衡化と固有状態熱化仮説 (ETH)
 - マクロな不可逆性の起源
 - 固有状態熱化仮説:大偏差解析による数値計算,典型性
- ・2. 量子情報の非局所化 (スクランブリング)
 - 「カオスの上限」と非可積分性
 - 三体相互情報量,初期状態依存性
 - ・ XXX模型とSachdev-Ye-Kitaev (SYK) 模型
 - ・ clean SYK模型を含むSYK-like模型:Wishart SYK模型
 - 基底状態の縮退
- Summary

「マクロな不可逆性がどのように創発するか?」 → ボルツマン以来の根本的な問い

<u>統計力学の舞台としての孤立量子多体系</u>

孤立量子多体系の緩和

純粋状態の可逆(ユニタリ)時間発展でさえ

物理量の期待値は熱平衡化する

von Neumann, 1929 (arXiv:1003.2133)

実験的な検証

Q. 孤立量子多体系の熱平衡化のメカニズムは?

定義:物理量の期待値の熱化

(緩和に加えて)期待値がミクロカノニカル平均と一致 $\langle \psi(t) | \hat{O} | \psi(t) \rangle \simeq \langle \hat{O} \rangle_{\text{MC}}$

定義:物理量の期待値の熱化

(緩和に加えて)期待値がミクロカノニカル平均と一致

 $\langle \psi(t) | \hat{O} | \psi(t) \rangle \simeq \langle \hat{O} \rangle_{\mathrm{MC}}$

量子力学から熱力学第二法則へ

数值計算 金子和哉, 伊與田英輝, 沙川貴大, 日本物理学会誌 Vol.73, No. 6, p. 361 (2018)

1次元 XXZ 量子スピン鎖 次々近接相互作用 → 可積分性を壊すパラメタ $\hat{O} = \frac{1}{L} \sum_{i=1}^{L} (\hat{S}_{i}^{+} \hat{S}_{i+3}^{-} + \hat{S}_{i}^{-} \hat{S}_{i+3}^{+})$

♦♦♦♦ 解説 ♦♦♦♦

非可積分:熱化する `積分:熱化しない

<u>時間発展 と物理量の長時間平均</u>

セットアップ純粋状態がシュレーディンガー方程式で時間発展 初期状態 $|\psi(0)\rangle = \sum_{j} c_{j}|E_{j}\rangle$ 時間発展後 $|\psi(t)\rangle = e^{-i\hat{H}t}|\psi(0)\rangle = \sum_{j} c_{j}e^{-iE_{j}t}|E_{j}\rangle$ 期待値 $\langle \hat{O} \rangle_{t} := \langle \psi(t)|\hat{O}|\psi(t)\rangle$

<u>時間発展と物理量の長時間平均</u>

セットアップ 純粋状態がシュレーディンガー方程式で時間発展 初期状態 $|\psi(0)\rangle = \sum_{j} c_{j} |E_{j}\rangle$ $|E_{j}\rangle$: エネルギー固有状態 簡単のため, エネルギーに縮退なし

時間発展後
$$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle = \sum_{j} c_{j}e^{-iE_{j}t}|E_{j}\rangle$$

期待値 $\langle \hat{O} \rangle_{t} := \langle \psi(t)|\hat{O}|\psi(t)\rangle$

長時間平均とその周りの時間ゆらぎ

長時間平均
$$\overline{\hat{O}} := \lim_{\tau \to \infty} \frac{1}{\tau} \int_0^\tau dt \langle \hat{O} \rangle_t = \sum_j |c_j|^2 \langle E_j | \hat{O} | E_j \rangle$$

時間ゆらぎ $(\Delta O)^2 := \overline{(\hat{O} - \overline{\hat{O}})^2}$

時間ゆらぎが小さいなら定常値に緩和し、その値は長時間平均

長時間平均とその周りの時間ゆらぎ

初期状態の有効次元が大きいなら、長時間平均へと緩和する Q. 長時間平均はミクロカノニカル平均か?

固有状態熱化仮説 (ETH)
Eigenstate Thermalization Hypothesis
「全ての固有状態が熱的」

$$O_j := \langle E_j | \hat{O} | E_j \rangle \simeq \langle \hat{O} \rangle_{\text{MC}}$$

 $|E_j \rangle : エネルギーシェル内のエネルギー固有状態$

1. ETHが成り立つなら熱化する $\overline{\hat{O}} = \sum_{j=1}^{D} |c_j|^2 \langle E_j | \hat{O} | E_j \rangle \simeq \langle \hat{O} \rangle_{\mathrm{MC}} \sum_{j \in \mathrm{shell}} |c_j|^2 \simeq \langle \hat{O} \rangle_{\mathrm{MC}}$ 熱化の十分条件という意味で ETHはエルゴード仮説の量子版とみなせる

2. 非可積分系で成り立ち、

可積分系で成り立たないと考えられている。

金子和哉, 伊與田英輝, 沙川貴大, 日本物理学会誌 Vol.73, No. 6, p. 361 (2018)

金子和哉, 伊與田英輝, 沙川貴大, 日本物理学会誌 Vol.73, No. 6, p. 361 (2018)

<u>強いETH vs 弱いETH</u>

 $O_i := \langle E_i | \hat{O} | E_i \rangle \simeq \langle \hat{O} \rangle_{\mathrm{MC}}$

エネルギー固有状態での期待値が ミクロカノニカル平均と一致

強いETH 弱いETH <u>ほとんど</u>全ての*j*で成立 **全て**の*j* で成立 成り立たないjが少しあっても良い 熱化の十分条件 (数値計算) 非可積分系:〇 定理により 非可積分系:〇 可積分系:x 可積分系:〇 M. Rigol, V. Duniko, and M. Olshanii, G. Biroli, C. Kollath, and A. Lauchli, PRL 105, 250401 (2010) Nature 452, 854 (2008) T. Mori, arXiv:1609.09776 (2016) H. Kim, T. N. Ikeda, and D. A. Huse, E. lyoda, K. Kaneko, T. Sagawa, PRL 119, 100601 (2017) PRE 90, 052105 (2014)

可積分系は熱化しない → この違いが重要 **強いETHが成立するかを系統的・<u>直接的</u>に検証したい**

<u>大偏差解析と非熱的固有状態</u>

<u>大偏差解析と非熱的固有状態</u>

<u>コメント:強いETH vs 弱いETH</u>

1. 弱いETHが不十分な理由

G. Biroli, C. Kollath, and A. Lauchli, PRL 105, 250401 (2010)

$$O_j := \langle E_j | \hat{O} | E_j \rangle \simeq \langle \hat{O} \rangle_{\mathrm{MC}}$$

可積分系では非熱的な状態に 指数関数的に大きな重みが乗ることで 熱化が起こらない 例: $\sum |c_j|^2 \simeq 1$

j:athermal

2. 強いETH以外の熱化のメカニズム

N. Shiraishi and T. Mori, PRL 119, 030601 (2017)

並進対称で局所保存量がない場合に強いETHの反例を構成 強いETHは満たさないが、熱化はする

<u>ハミルトニアンのエネルギー準位統計</u>

- Poisson分布 (可積分)
- Wigner-Dyson (WD) 分布 (非可積分) → 量子カオス

近可積分系でも熱力学極限で Wigner-Dyson 分布

L. Santos and M. Rigol, PRE 81, 036206 (2010)

$$\alpha \equiv \frac{\sum_{i} |P(s_i) - P_{WD}(s_i)|}{\sum_{i} P_{WD}(s_i)}$$

熱化のメカニズムの有力な仮説の一つ:強いETH

量子カオスにおける準位統計の結果から 近可積分系は熱化すると期待されている L. Santos and M. Rigol, PRE 81, 036206 (2010)

一方、近可積分系は有限サイズ効果が大きいため 数値検証が難しい

大偏差解析により強いETHを直接的に数値検証

熱力学に従わない可積分系は摂動に対して安定なのか?

M. Rigol A. Muramatsu, PRL **93**, 230404 (2004) M. Rigol, PRA **72**, 063607 (2005)

 $L = 12 \sim 21, 24(\lambda = 1)$ 厳密対角化法

 $L = 24(\lambda \neq 1)$ 櫻井杉浦(SS)法, スパコン(ISSP) T. Sakurai and H. Sugiura, J. Comput. Appl. Math. **159**, 119 (2003)

SS法: 留数積分を利用して経路内の射影ベクトルを取得 Krylov部分空間法の一種

非熱的な状態の定義と物理量

$$D_{out} := \sum_{|E_{\alpha}\rangle \in \mathcal{M}(E,\Delta E)} \theta\left(\left| \langle \hat{O} \rangle_{\alpha} - \langle \hat{O} \rangle_{\alpha,MC} \right| - \varepsilon \right) \right)$$

$$\theta(\cdot) : \exists z = \psi \forall z \in \mathcal{M}(E,\Delta E)$$

$$\mathcal{O}(\mathbf{C}) : \mathbf{X} \mathbf{J} \mathbf{Y} \mathbf{J} \mathbf{H} \mathbf{H} \mathbf{K}$$

$$\mathcal{M}(E, \Delta E) := \{ |E_{\alpha}\rangle | E - \Delta E < E_{\alpha} < E \}$$

: **エネルギーシェル**
 $\langle \hat{O} \rangle_{\alpha, MC} := \frac{1}{|\mathcal{M}(E_{\alpha}, \delta)|} \sum_{|E_{\beta}\rangle \in \mathcal{M}(E_{\alpha}, \delta)} \langle \hat{O} \rangle_{\beta}$
Athermal eigenstates
 $\langle \hat{O} \rangle_{\alpha, MC} := \frac{1}{|\mathcal{M}(E_{\alpha}, \delta)|} \langle \hat{O} \rangle_{\beta}$
 $|E_{\beta}\rangle \in \mathcal{M}(E_{\alpha}, \delta)$

<u>物理量</u> (ハードコアボソンによる表示)

粒子数相関 $\hat{n}_1\hat{n}_2 = \hat{b}_1^{\dagger}\hat{b}_1\hat{b}_2^{\dagger}\hat{b}_2$

3次近接ホッピング
$$\hat{h} = \frac{1}{L} \sum_{i} \left[\hat{b}_{i}^{\dagger} \hat{b}_{i+3} + h.c.
ight]$$

 $D_{\text{out}} := \sum_{|E_{\alpha}\rangle \in \mathcal{M}(E, \Delta E)} \theta\left(\left| \langle \hat{O} \rangle_{\alpha} - \langle \hat{O} \rangle_{\alpha, \text{MC}} \right| - \varepsilon \right) \quad 非熱的固有状態の数$

非熱的固有状態の数が指数関数的に増加

強いETHは成立しない

いずれの物理量でも, $\lambda > 0$ で上に凸の減少関数 $\rightarrow \lambda > 0$ で強いETHが成立

 D_{out}/D が二重指数関数で減少しているように見えたため $f(L) := a \exp(-b \exp(cL))$ でフィッティング

- ・小さな非可積分項で強いETHが成立
- ・近可積分系でも熱化する

T. Yoshizawa, <u>E. Iyoda</u>, and T. Sagawa, PRL **120**, 200604 (2018)

強いETHの判定のため, 固有状態の**大偏差的性質**に着目した数値計算を行った 近可積分系を含む非可積分系では強いETHが成立 非熱的状態数の比 D_{out}/D が系のサイズに対して 二重指数関数的に減少することを明らかにした

強いETHが近可積分系で成立するのは **準位統計**の結果と整合的である

Outline

- ・1. 熱平衡化と固有状態熱化仮説 (ETH)
 - マクロな不可逆性の起源
 - 固有状態熱化仮説:大偏差解析による数値計算,典型性
- ・2. 量子情報の非局所化 (スクランブリング)
 - 「カオスの上限」と非可積分性
 - 三体相互情報量,初期状態依存性
 - ・ XXX模型とSachdev-Ye-Kitaev (SYK) 模型
 - ・ clean SYK模型を含むSYK-like模型:Wishart SYK模型
 - 基底状態の縮退
- Summary

量子カオス

- ・エネルギー準位統計:非可積分系でのみWigner-Dyson分布
- ・強いETH:非可積分系でのみ成立 $O_j := \langle E_j | \hat{O} | E_j \rangle \simeq \langle \hat{O} \rangle_{\mathrm{MC}}$

スクランブリング: 量子情報の非局所化

- ブラックホールの情報パラドックスの文脈で重要
 - 指標: 1. 非時間順序相関関数の減衰
 - Decay of out-of-time-ordered correlator (OTOC)
 - 2. 負の三体相互情報量

Negativity of tripartite mutual information (TMI)

Hosur, Qi, Roberts, Yoshida, JHEP 02, 004 (2016)

<u>スクランブリングとブラックホール</u>

ブラックホールの情報パラドックス

ブラックホール = fast scrambler

"A bound on chaos" 「カオスの上限」

- $\lambda_{\rm L} \leq \frac{2\pi}{\beta}$ $\lambda_{\rm L}$:OTOCの減衰率
- → スクランブリング:"chaotic"

Maldacena, Shenker, and Stanford, JHEP 08, 106 (2016) Tsuji, Shitara, and Ueda, arXiv:1706.09160

上限を満たす例: 共形場理論やSYK模型のある極限

Sachdev-Ye-Kitaev (SYK) 模型: "nearly holographic dual" of AdS2

Maldacena and Stanford, PRD (2016)

Motivation and question

スクランブリング = 量子情報の非局所化: "chaotic"

従来の量子カオス

非可積分性が重要

Wigner-Dyson準位統計や

強いETHは非可積分系のときのみ成り立つ

Q. スクランブリングには非可積分性は重要か?

→ 量子多体系の三体相互情報量を数値計算

A. 長時間領域でスクランブリングは非可積分性によらず (ほとんどの状態で)生じる

Hosur, Qi, Roberts, Yoshida, JHEP 02, 004 (2016) Cerf and Adami, Physics D, 120, 62(1998)

- ・von Neumann entropy $S_X := \operatorname{tr}[-\hat{
 ho}_X \ln \hat{
 ho}_X]$ $\hat{
 ho}_X : 領域Xの縮約密度行列$
- 二体相互情報量 (Bipartite Mutual Info.) $I_2(A:B) := S_A + S_B S_{AB}$
 - AとBの間の相関
- <u>**=**</u> \mathbf{A} **H** \mathbf{A} **H** \mathbf{B} **H** \mathbf{A} **H** \mathbf{B} **H** \mathbf{A} **H** \mathbf{A} **H** \mathbf{B} **H** \mathbf{C} $I_3(\mathbf{A} : \mathbf{B} : \mathbf{C})$ $:= S_{\mathbf{A}} + S_{\mathbf{B}} + S_{\mathbf{C}} - S_{\mathbf{AB}} - S_{\mathbf{BC}} - S_{\mathbf{CA}} + S_{\mathbf{ABC}}$ $= I_2(\mathbf{A} : \mathbf{B}) + I_2(\mathbf{A} : \mathbf{C}) - I_2(\mathbf{A} : \mathbf{BC})$

<u>負の三体相互情報量:非局所化</u>

例:3つの古典ビット

1. x = y = z x :random $\rightarrow I_3 = \ln 2$ (三体相関) 2. x, y, z :random, independent $\rightarrow I_3 = 0$ (三体相関無し) 3. $x = y \oplus z$ y, z :random, independent $\rightarrow I_3 = -\ln 2$ $y \in z \in \psi f$ では $x \in h$ 関していないが 合成系yzは $x \in h$ 関している $\rightarrow x$ に関する情報が $y \in z$ に非局所化している

三体相互情報量が負: *I*₂(X : Y) + *I*₂(X : Z) < *I*₂(X : YZ)
 → スクランブリング: 量子情報の非局所化

Cf. 笠-高柳公式が成り立つと

 $\rightarrow I_3 \leq 0$

Hayden, Headrick, Maloney, PRD 87, 046003 (2013) (i) S(AB)+S(BC)+S(AC)

 $\hat{U}_{\text{CNOT}}\left(|0\rangle_{\text{A}}+|1\rangle_{\text{A}}\right)|0\rangle_{\text{B}}=|0\rangle_{\text{A}}|0\rangle_{\text{B}}+|1\rangle_{\text{A}}|1\rangle_{\text{B}}$

→Aの情報をエンタングルメントを通してBにエンコード

3. BCDのみがハミルトニアンで時間発展

このセットアップで $I_3(A:B:C)$ のダイナミクスを計算

扱う全系のスケッチ:

- 量子ビット A
- 量子多体系 BCD

量子多体系 BCD

- 1. 量子スピン鎖
- 1d XXX Heisenberg 模型 + 次近接相互作用
- (1d 横磁場lsing模型)

→ 可積分性

- (1d XXX Heisenberg model with disordered magnetic field)
- 2. Sachdev-Ye-Kitaev (SYK) 模型
 - 全結合, 4体相互作用, complex fermions
 - disordered or clean couplings

Calabrese and Cardy, J. Stat. Mech. (2005); Kim and Huse, PRL (2013)

正の三体相互情報量: not scrambled

→ z方向の全磁化の保存のため,

ダイナミクスが小さいサブスペースに制限されている

→ スクランブリングは可積分性によらず生じる

Numerical results: 1. 量子スピン鎖 初期状態依存性

L = 12 $|\Xi\rangle_{BCD}$: 2^{L} 個の計算基底 $I_{3}^{\max/\min}$ 三体相互情報量の $0 \le Jt < 10^{5}$ における最大(小)値

スクランブリングはほぼ全ての初期状態で起きる
例外: |000…0⟩, |100…0⟩, |011…1⟩, |111…1⟩
1d横磁場Ising模型 → すべての初期状態で非局所化が生じる
z方向の全磁化が保存しないため

Numerical results: 2. SYK 模型 Sachdev-Ye-Kitaev (SYK) 模型

$$\hat{H}_{\text{SYK}} := \frac{1}{(2L)^{3/2}} \sum_{i,j,k,l} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Kitaev, Talks at KITP (2015) Sachdev, PRX (2015) Maldacena and Stanford, PRD (2016)

 $J_{ij;kl}$: complex Gaussian with variance J^2

$$J_{ij;kl} = -J_{ji;kl} = -J_{ij;lk} = J_{lk;ji}^*$$

<u>Note</u>

- 1. Kitaev: Majorana fermionsのSYK模型を導入
- \rightarrow tractable or "solvable" in large-N(L) limit Maldacena and Stanford, PRD (2016)

2. Complex fermionsのSYK模型も同様 Sachdev, PRX (2015)

→ 以下ではcomplex fermionsのSYK模型を扱う

Numerical results: 2. SYK 模型 SYK模型の三体相互情報量

$$\hat{H}_{\text{SYK}} := \frac{1}{(2L)^{3/2}} \sum_{i,j,k,l} J_{ij;kl} c_i^{\dagger} c_j^{\dagger} c_k c_l$$

Kitaev, Talks at KITP (2015) Sachdev, PRX (2015) Maldacena and Stanford, PRD (2016)

 $J_{ij;kl}$: complex Gaussian with variance J^2

$$J_{ij;kl} = -J_{ji;kl} = -J_{ij;lk} = J_{lk;ji}^*$$

SYK模型の三体相互情報量

乱れ(disorder)はスクランブリングを遅くしない → 多体局在 (MBL) の遅い情報伝搬とは対照的

Numerical results: 2. SYK 模型 乱れのない (clean) SYK 模型

Clean SYK 模型 $J_{ij;kl} \equiv J \ (i > j, k > l)$

乱れのある(普通の)SYK模型は 1サンプルレベルで滑らかにスクランブリングを起こす

Clean SYK模型:緩和後に大きな時間ゆらぎ

Clean SYK模型の時間ゆらぎの起源

SYK模型の亜種を導入し, clean SYKのゆらぎの起源を調べる

Wishart SYK 模型 (fermions/bosons)

E. lyoda, H. Katsura, and T. Sagawa, arXiv:1806.10405

→ Clean SYK模型を特殊な場合として含む

<u>Clean SYK模型の時間ゆらぎの起源</u>

SYK模型の亜種を導入し, clean SYKのゆらぎの起源を調べる

<u>Wishart SYK 模型</u> (fermions/bosons) <u>E. lyoda</u>, H. Katsura, and T. Sagawa, arXiv:1806.10405 → Clean SYK模型を特殊な場合として含む

Ref. SYK模型の亜種・拡張の例 (高エネルギー/物性)

q-point interactions

Maldacena and Stanford, PRD (2016)

SUSY extensions

Fu et al., PRD (2017) Sannomiya et al., PRD (2017) Peng et al., JHEP (2017) Li et al., JHEP (2017) Kanazawa and Wetting, JHEP (2017)

disorder-free tensor models

Peng et al., JHEP (2017) Witten, arXiv: 1610.09758 (2016)

lattice structure

Jian and Yao, PRL (2017) Gu et al., JHEP (2017) Berkooz et al., JHEP (2017)

coupled or perturbed system

Non-fermi液体 etc

Song et al., PRL (2017); Chen et al., PRL (2017) Bi et al., PRB (2017); Chen et al., JHEP (2017) Garcia-Garcia et al., JHEP (2017) Garcia-Garcia et al., PRL (2018) Zhang and Zhai, PRB (2018)

Proposal for experiments

Danshita et al., PTEP (2017)

Wishart SYK模型 E. Iyoda, H. Katsura, and T. Sagawa, arXiv:1806.10405

$$egin{aligned} H_{ ext{wSYK}} := Q^{\dagger}Q & Q := rac{1}{N} \sum_{1 \leq k < l \leq N} J_{k,l} c_k c_l \ J_{k,l} : ext{complex Gaussian (mean=}\overline{J}, ext{variance=}J^2) \ c_k : ext{complex fermions } \mathcal{O}消滅演算子 \end{aligned}$$

Note

1. 粒子数保存 $N_{P} \coloneqq \sum_{i=1}^{N} c_{i}^{\dagger} c_{i}$ 2. $\overline{J} \neq 0, J = 0$ のときclean SYKに帰着 3. Positive semidefinite \rightarrow エネルギー固有値が非負 4. ハードコアボソンについても同様に定義可能 replace $c_{k} \rightarrow b_{k}$ $\begin{bmatrix} b_{i}, b_{j}^{\dagger} \end{bmatrix} = \begin{bmatrix} b_{i}^{\dagger}, b_{j}^{\dagger} \end{bmatrix} = \begin{bmatrix} b_{i}, b_{j} \end{bmatrix} = 0$ for $i \neq j$ $\{b_{i}, b_{i}\} = \{b_{i}^{\dagger}, b_{i}^{\dagger}\} = 0$ and $\{b_{i}, b_{i}^{\dagger}\} = 1$

Index of eigenstate

縮退によって有効次元が小さくなる→ゆらぎの増大に寄与

Ref. 物理量の時間ゆらぎ $(\Delta O)^2 \leq \|\hat{O}\| \frac{D_G}{D_{\text{eff}}}$

OTOCの時間ゆらぎについても 同様の不等式が期待される (証明はできていない)

 $C_{\rm AB}(t) := \langle \Psi | A^{\dagger}(t) B^{\dagger}(0) A(t) B(0) | \Psi \rangle$

 $A = c_1 (b_1)$ $B = c_1^{\dagger} (b_1^{\dagger})$

初期状態を 全ての計算基底について計算

 $(\Delta C_{\rm AB})^2 \le C \frac{D_G}{D_{\rm eff}}$

はOTOCの場合にも 成立していると期待

可積分:Poisson分布 非可積分:Wigner-Dyson分布 (GOE, GUE, GSE)

SYK, SUSY SYKは量子カオス的 (GUE) You et al, PRB (2017) Kanazawa and Wetting, JHEP (2017)

<u>Wishart SYKの準位統計</u>

Example 7
Fermionic Wishart SYK模型の可積分性

$$H_{wSYK} := Q^{\dagger}Q$$
 $Q := \frac{1}{N} \sum_{1 \le k < l \le N} J_{k,l}c_kc_l$
簡単のためNが偶数で $J_{k,l}$ が実とする. $M := N/2$
1. J の歪対称性より J をブロック対角化できる
2. 新しいfermionを導入
 $(f_{1,\uparrow}, f_{1,\downarrow}, \cdots, f_{M,\uparrow}, f_{M,\downarrow})$
 $:= (c_1, c_2, \cdots, c_{2M-1}, c_{2M})O$ $o^{\tau}JO = \begin{pmatrix} 0 & \lambda_l & \dots & \dots & \dots \\ 0 & \lambda_{N/2} & \dots & \dots & \dots \\ 0 & \lambda_{N/2} & \dots & \dots & \dots \\ 0 & \lambda_{N/2} & \dots & \dots \end{pmatrix}$

3. ハミルトニアンが代数的Bethe仮設で解けることが知られている Richardson-Gaudin模型に帰着 Alantekin, PRC (2007)

$$H_{\rm wSYK} = \left(\sum_{j=1}^{M} \lambda_j f_{j,\downarrow}^{\dagger} f_{j,\uparrow}^{\dagger}\right) \left(\sum_{k=1}^{M} \lambda_k f_{k,\uparrow} f_{k,\downarrow}\right)$$

情報の非局所化 (スクランブリング) を

E. Iyoda and T. Sagawa, Phys. Rev. A **97**, 042330 (2018)

三体相互情報量を用いて数値的に調べた

- 1. 可積分性によらず非局所化が生じる (少数の例外的な初期状態あり)
- → 従来の量子カオスとは別のもの

	Scrambled $(I_3 < 0)$	Not scrambled $(I_3 > 0)$
Non-integrable	XXX+J' (Néel)	XXX+J' (all-up)
	TFI+ h_z (Néel, all-up)	
Integrable	XXX (Néel)	XXX (all-up)
	TFI (Néel, all-up)	
	Clean SYK (Néel)	Clean SYK (all-up)
Disordered	MBL (Néel)	MBL (all-up)
	Disordered SYK (Néel)	Disordered SYK (all-up)

2. SYK模型ではdisorderによってスクランブリングは滑らかに

Wishart SYK模型を導入: clean SYKを特別な場合として含む

基底状態の縮退により有効次元が減少 → ダイナミクスに影響

Fermionic Wishart SYK:可積分

E. Iyoda, H. Katsura, and T. Sagawa, arXiv:1806.10405.

Summary

1. 熱化のメカニズムの一つである強いETHの数値検証

keywords: 大偏差解析, 櫻井杉浦法

- T. Yoshizawa, <u>E. Iyoda</u>, and T. Sagawa, PRL **120**, 200604 (2018)
- ・近可積分系を含む非可積分系で強いETHが成立
- ・非熱的状態数の比率 $D_{\rm out}/D$ が二重指数関数的に減衰

2. 情報の非局所化を三体相互情報量を用いて数値的に調べた <u>E. lyoda</u> and T. Sagawa, PRA 97, 042330 (2018)

- ・非局所化 (スクランブリング) は可積分性によらず生じる
- ・SYK模型ではdisorderが非局所化のダイナミクスを滑らかに
- ・Disorderの役割→Wishart SYK模型

E. Iyoda, H. Katsura, and T. Sagawa, arXiv:1806.10405

→ 基底状態の大きな縮退による有効次元の低下