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Reference: “Entanglement branching operator”, Phys. Rev. B 97,045124 (2018)
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Reference: “Entanglement branching operator”, Phys. Rev. B 97,045124 (2018)



Entanglement and singular value decomposition

Schmidt decomposition
sub-system A sub-system B

) = Z (Tran) Im) @ [n) = > (A) |w) @ |v)

- MMM

Entanglement entropy SE — —Irp P A log /OA Z )\2 log )\2




Entanglement and singular value decomposition

Schmidt decomposition
sub-system A sub-system B

) = Z (Trmn) Im) ® |n) Z (A1) |w) @ |uy)

- MMM

Entanglement entropy SE — —Irp P A log /OA Z )\2 log )\2

1D quantum state
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Entanglement and singular value decomposition

D Schmidt decomposition
sub-system A sub-system B

) = Z (Trmn) Im) ® |n) Z (A1) |w) @ |uy)
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Entanglement entropy Sz (A) = —Irp pa log ,OA Z )\2 log )\2

1D quantum state
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Entanglements flow on a link




Tensor network, tensor network algorithm, and entanglement flow

1D quantum state




Tensor network, tensor network algorithm, and entanglement flow

1D quantum state 2D quantum state

PEPS(TPS)



Tensor network, tensor network algorithm, and entanglement flow

1D quantum state 2D quantum state 2D classical
artition function
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Tensor network, tensor network algorithm, and entanglement flow

1D quantum state 2D quantum state 2D classical
partition function
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Tensor network, tensor network algorithm, and entanglement flow

1D quantum state 2D quantum state 2D classical
A partition function
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Tensor network, tensor network algorithm, and entanglement flow

1D quantum state 2D quantum state 2D classical
A partition function
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Tensor network algorithm
TEBD, CTM,TRG, HOTRG, ...



Entanglement branching operator

Split of a composite entanglement flow in a link
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Entanglement branching operator

Split of a composite entanglement flow in a link
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Bond dimensions on a link a and b
are squeezable,
when B, W, and V are optimized



Iteration method to solve an optimization problem for entanglement branching operator

Minimize a distance between the following TNs
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Iteration method to solve an optimization problem for entanglement branching operator

Minimize a distance between the following TNs
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@ Algorithm

(1) Initialize B, w, and v randomly. Set the values of bond dimension of links a and b one.
(2) Iteratively update B, w, and v to minimize the squared distance.
(3) Increase bond dimensions of links a and b, and extend bond dimensions of w and v.

(4) Go back to (2), until bond dimensions of links a and b reach a limit of them.



Improvement of HOTRG by entanglement branching
@ Necessary condition of a proper real-space RG 7w o 001 faoios o
¢ erase entanglements under a renormalized scale — TNR based on TRG getHorre

@ HOTRG algorithm

(Red) loop entanglement structures
remain

Xie et al., Phys. Rev. B 86,045139 (2012)



Improvement of HOTRG by entanglement branching
@ Necessary condition of a proper real-space RG 7w o 001 faoios o
¢ erase entanglements under a renormalized scale — TNR based on TRG @erorrg

@ HOTRG algorithm @ Pick up a red entanglement flow
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There is no entanglement
between L and R.
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Gather loop entanglement structures
Xie et al., Phys. Rev. B 86, 045139 (2012) in the combination of R and L.



Improvement of HOTRG by entanglement branching

@ Necessary condition of a proper real-space RG [0 5001 s o eors
¢ erase entanglements under a renormalized scale — TNR based on TRG qoctorra)

@ HOTRG algorithm @ Pick up a red entanglement flow
i) k

There is no entanglement
between L and R.

\ 4

Gather loop entanglement structures
in the combination of R and L.



Example: HOTRG of 2D Ising model
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Renormalization step
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Many-body decomposition




Many-body decomposition

@ Tensor decomposition



Many-body decomposition

@ Tensor decomposition

¢ Matrix-based decomposition yields only a two-body tensor network



Many-body decomposition

@ Tensor decomposition
¢ Matrix-based decomposition yields only a two-body tensor network

¢ Many-body decomposition by entanglement branching operator



Many-body decomposition

@ Tensor decomposition
¢ Matrix-based decomposition yields only a two-body tensor network

¢ Many-body decomposition by entanglement branching operator

T SVD Branching Contracting SVD
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Many-body decomposition and derivation of PEPS

@ Tensor decomposition
¢ Matrix-based decomposition yields only a two-body tensor network

¢ Many-body decomposition by entanglement branching
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@ Derivation of PEPS based on many-body decomposition
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If the area law of entanglement entropy holds,
bond dimensions of a derived PEPS are finite

The metric in PEPS is related

to entanglement strength




Summary

@ Entanglement branching operator

¢ split of a composite entanglement flow in a link
¢ optimization problem by squeezing operators for EB operator

* iteration method can be applied
@ Applications of entanglement branching operators

Entropy

¢ improvement of HOTRG

» proper RG

* new tensor network state
¢ many-body decomposition
D>
Branching Many- body
decomposing

» derivation of PEPS
Reference: Kenji Harada, “Entanglement branching operator”, Phys. Rev. B 97,045124 (2018)




New tensor network state as like MERA

@ Repeating a new HOTRG procedure to a tensor network
representation of a density operator

Open boundary
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Open boundary
New tensor network

Log correction of E.E. : ok!



